skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, Jinyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High-throughput screening and material informatics have shown a great power in the discovery of novel materials, including batteries, high entropy alloys, and photocatalysts. However, the lattice thermal conductivity ( κ ) oriented high-throughput screening of advanced thermal materials is still limited to the intensive use of first principles calculations, which is inapplicable to fast, robust, and large-scale material screening due to the unbearable computational cost demanding. In this study, 15 machine learning algorithms are utilized for fast and accurate κ prediction from basic physical and chemical properties of materials. The well-trained models successfully capture the inherent correlation between these fundamental material properties and κ for different types of materials. Moreover, deep learning combined with a semi-supervised technique shows the capability of accurately predicting diverse κ values spanning 4 orders of magnitude, especially the power of extrapolative prediction on 3716 new materials. The developed models provide a powerful tool for large-scale advanced thermal functional materials screening with targeted thermal transport properties. 
    more » « less
  2. null (Ed.)